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Abstract

The purpose of this document is to walk the user through a demonstration of the PDM package. The
commands are basically the same as those in the PDM package demo (demo(PDM)).
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Overview

The PDM package carries out the Partition Decoupling Method (PDM) as described in [1]. The PDM [1,
2, 3] is an unsupervised machine-learning or clustering technique that consists of two iterated submethods:
the first, spectral clustering [4, 5, 6], finds the dominant structures within the system, while the second
“scrubbing” step removes this structure (by projecting the data onto the cluster centroids and taking the
residuals) such that the next clustering iteration can articulate an independent set of clustering relationships.
The two steps are repeated until the residuals are indistinguishable from noise. By performing successive
clustering steps, factors contributing to the partitioning of the data at different scales may be revealed, as
demonstrated in [1, 2].

Methodology

The following is a brief overview of the method; for a complete description of the PDM and spectral clustering,
we refer the reader to the literature [1, 2, 4, 5, 6].

The first step, spectral clustering, serves to identify clusters of samples in high-dimensional gene-
expression space. Spectral clustering offers several advantages over traditional clustering algorithms; most
importantly, no constraint is placed on the geometry of the data, in contrast to the tree-like structure
imposed by hierarchical clustering [7] or the necessity of convexity of the clusters for detection via distance-
based k-means clustering [8, 9] and in Self Organizing Maps [10], meaning that clusters with nonlinear and
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nonconvex boundaries may be articulated (cf. [1, 2, 4, 5, 6]). Spectral clustering also uses a low-dimensional
embedding of the data, thus excluding the noisy, high-frequency components.

In spectral clustering, the data are represented as a complete graph in which nodes correspond to samples
and edge weights si,j correspond to some measure of similarity between a pair of nodes i and j. In the PDM
package, the similarity is defined as a Gaussian function of the distance ti,j between samples i and j with
a scaling parameter σ that may be tuned (by setting the parameter sigma) to set the scale of distances
deemed significant (cf. [1, 2]):

si,j = exp

(
−

t2i,j
2σ2

)
. (1)

The function that computes the distance ti,j may be supplied by the user as the distanceFn parameter, and
should return distances scaled on [0, 1]; the PDM package also includes a correlation-based distance function
correlationDist which gives ti,j = sin(arccos(ρi,j)/2) (the default) and a Euclidean distance function
euclideanDist for the user’s convenience.

Spectral graph theory (see, e.g., [4]) is used to find groups of connected, high-weight (ie, high-similarity)
edges that define clusters of samples. This problem may be reformulated as a form of the min-cut problem:
cutting the graph across edges with low weights, so as to generate several subgraphs for which the similarity
between nodes is high and the cluster sizes preserve some form of balance in the network. It has been
demonstrated [4, 5, 6] that this problem may be solved through eigendecomposition of the graph Laplacian
matrix L, a matrix derived from the similarity matrix S (with entries sij) and the diagonal degree matrix
D (where the ith element on the diagonal is the degree of entity i, di = sumjsij) that encapsulates the
geometry of the system. Several normalized forms of the Laplacian exist [6]; by default, PDM uses the
symmetric normalized form

L = I−D−1/2 SD−1/2 , (2)

but the parameter norm may be set to "symmetric" (the default), "rowsum" (for the row-sum normalized
Laplacian), or "none" (for the unnormalized Laplacian)—see [6] for descriptions.

Eigendecomposition of L contains information regarding the graph geometry. Specifially, smaller eigenval-
ues correspond to coarser geometry encapsulated by their corresponding eigenvector (akin to larger loadings
corresponding to larger variance encapsulated by components in PCA). The 0-eigenvalues correspond to the
number of connected components (here, one) and are trivial; the first non-zero eigenvector/eigenvalue pair
(“Fiedler value” λ1 and “Fiedler vector” v1) describe the geometry having the coarsest structure. A one–
dimensional summary via the Fiedler vector provides the greatest dimension reduction—but optimal with
respect to the geometry—of the data. Finer resolution is provided by the dimension reductions obtained
by increasing the dimensionality via the use of additional eigenvectors (in order according to increasing
eigenvalue). Conceptually, this is similar to PCA, but with the benefit that the coordinates in this so-called
“Laplacian eigenmap” may be nonlinear in the original coordinate space (additionally, it may be shown that
the Laplacian eigenmap is identical, up to a multiplicative factor, to kernel PCA using a Gaussian kernel).

By using a low-dimensional nonlinear embedding the data as defined by the low-frequency eigenvectors
and clustering the embedded data using k-means [8], the geometry of the data may be revealed. In order
to use k-means on the embedded data, two parameters need to be set: the number of eigenvectors l to use
(that is, the dimensionality of the embedded data) and the number of clusters k into which the data will be
clustered.

Optimization of l

The optimal dimensionality of the embedded data is obtained by comparing the spectrum (eigenvalues of
the Laplacian) to a reference distribution of spectra from resampled data. The motivation of this approach
follows from the observation that the size of eigenvalues corresponds to the degree of structure (see [6]),
with smaller eigenvalues corresponding to greater structure. Specifically, we wish to construct a distribution
of null spectra select the eigenvalues from the true data that are significantly small with respect to this
distribution (below the 0.05 quantile) or have significantly large eigengaps, defined as λi − λi−1 (above the
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0.95 quantile). In doing so, we select the eigenvalues that indicate greater structure than would be expected
by chance alone.

As described in [1], the resampling may be done on the distances ti,j (or similarities si,j), corresponding
to “rewiring” the graph and thus preserving the marginal distributions of the data; alternatively, the data
itself may be resampled row-wise, which destroys the marginal distributions but may in some cases be a
more appropriate null model. This can be controlled by setting the resample.by parameter to "distances"
or "rows", respectively. The number of resamplings is controlled by the parameter resample.runs and
defaults to 40.

Once the reference distribution of the spectrum is obtained, the true spectrum may be compared to it.
The comparison criteria may be set by parameter compare: "fiedgaps" (the default) compares the spectral
gaps to the 0.95 quantile of the resampled gap of the Fiedler value; "gaps" compares the spectral gaps to the
0.95 quantiles of the corresponding resampled gaps; "fiedval" compares the spectrum to the 0.05 quantile
of the resampled Fiedler value; and "vals" compares the spectrum to the 0.05 quantiles of the corresponding
resampled eigenvalues.

The dimensions l of the embedding may be set via the parameter l as "sigEigvals" (the default) to be
the significant eigenvaluse determined as described above, "k" or "double.k" to equal the number or twice
the number of clusters k (see below), or as a numeric value. Note that even if l is not set to "sigEigvals",
the resampling should still be adequately performed to assess the stopping criteria (see Stopping, below).

Optimization of k

The PDM package provides the facility for obtaining the number of clusters as described in [1, 3]. Specifically,
one can use the number peaks in the density of the Fiedler vector—that is, the number of values about
which the elements of v1 are clustered—as the number of clusters, roughly analogous to finding regions
of high density along the first principle component of the data. To obtain this value, we fit a Gaussian
mixture model [11] with 2–30 components (assuming unequal variances), compute the Bayesian Information
Criterion (BIC) for each mixture model, and choose the optimum number of components (for details of the
BIC implementation, see [12, 13]).

The number of clusters k may be set via the parameter k as "BIC" (the default) to compute k as described
above; "NsigEigvals" to set k equal to the number of significant eigenvalues (see the Optimization of l
discussion, above); or a numeric value.

Scrubbing

After the clustering step has been performed and each data point assigned to a cluster, we wish to “scrub
out” the portion of the data explained by those clusters and consider the remaining variation. This is done by
computing first the cluster centroids (that is, the mean of all the datapoints assigned to a given cluster), and
then subtracting the data’s projection onto each of the centroids from the data itself, yielding the residuals.
The clustering step may then be repeated on the residual (“scrubbed”) data, revealing layers of clusters that
articulate relationships at multiple scales in the data.

Stopping

The spectral clustering and scrubbing steps are iteratively carried out by PDM() with identical parameters
in each iteration for the specified number of layers or until one of two “failures” occur: a) there are no
significant eigenvalues (see Optimization of l, above), meaning that the structure in the scrubbed data is
indistinguishable from noise, a so-called“partition failure”; or b) the cluster centroids are linearly dependent,
a so-called “projection failure.” (It should be noted here that the residuals may still be computed in the
latter case, but it is unclear how to interpret linearly dependent centroids; to continue PDM iterations
despite projection failures, the parameter scrubOnProjectionFailure may be set to TRUE.)
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Using PDM

PDM will attempt to cluster the columns of its input data set (note, this is the opposite of kmeans), and
can accept as input a numeric matrix, data.frame, or output of a previous PDM run provided there were
no failures (ie, it must have produced scrubbed data). We’ll begin by loading some data:

> library(PDM)

by using mclust, invoked on its own or through another package,
you accept the license agreement in the mclust LICENSE file
and at http://www.stat.washington.edu/mclust/license.txt

> data(golub1999)

> set.seed(100)

golub1999 is a list with gene expressions and phenotypes. Let’s take a peek:

> names(golub1999)

[1] "expr" "pheno"

> dim(golub1999$expr)

[1] 999 38

> length(golub1999$pheno)

[1] 38

> golub1999$expr[1:5, 1:4]

ALL_19769_B.cell ALL_23953_B.cell ALL_28373_B.cell ALL_9335_B.cell
AB002559_at 759 1062 822 1068
AF000231_at 169 88 196 146
AF002020_at 54 235 150 221
AF009426_at 36 38 120 16
AJ000480_at 895 1016 634 920

> golub1999$pheno

ALL_19769_B.cell ALL_23953_B.cell ALL_28373_B.cell ALL_9335_B.cell
"B-ALL" "B-ALL" "B-ALL" "B-ALL"

ALL_9692_B.cell ALL_14749_B.cell ALL_17281_B.cell ALL_19183_B.cell
"B-ALL" "B-ALL" "B-ALL" "B-ALL"

ALL_20414_B.cell ALL_21302_B.cell ALL_549_B.cell ALL_17929_B.cell
"B-ALL" "B-ALL" "B-ALL" "B-ALL"

ALL_20185_B.cell ALL_11103_B.cell ALL_18239_B.cell ALL_5982_B.cell
"B-ALL" "B-ALL" "B-ALL" "B-ALL"

ALL_7092_B.cell ALL_R11_B.cell ALL_R23_B.cell ALL_16415_T.cell
"B-ALL" "B-ALL" "B-ALL" "T-ALL"

ALL_19881_T.cell ALL_9186_T.cell ALL_9723_T.cell ALL_17269_T.cell
"T-ALL" "T-ALL" "T-ALL" "T-ALL"

ALL_14402_T.cell ALL_17638_T.cell ALL_22474_T.cell AML_12
"T-ALL" "T-ALL" "T-ALL" "AML"
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AML_13 AML_14 AML_16 AML_20
"AML" "AML" "AML" "AML"
AML_1 AML_2 AML_3 AML_5
"AML" "AML" "AML" "AML"
AML_6 AML_7
"AML" "AML"

Basic PDM usage

First, a demonstration of running PDM with default parameters:

> pdm.golub <- PDM(golub1999$expr)

Computing layer 1 ...
Computing layer 2 ...
Projection Failure: cluster centroids are not independent. Stopping with current layer.

> pdm.golub

PDMlayers object with:
Layers: 2
Samples: 38
Layer cluster assignments (first 10 samples):

layer.1 layer.2
ALL_19769_B.cell 2 3
ALL_23953_B.cell 2 3
ALL_28373_B.cell 2 3
ALL_9335_B.cell 2 3
ALL_9692_B.cell 2 3
ALL_14749_B.cell 2 1
ALL_17281_B.cell 2 3
ALL_19183_B.cell 2 3
ALL_20414_B.cell 2 3
ALL_21302_B.cell 2 1

... use "clusters()" to get complete clusters.

Available slots:
clusters params scrubbed PDMspectra

How to the resulting clusters correspond to the true classifications?

> table(clusters(pdm.golub)$layer.1, golub1999$pheno)

AML B-ALL T-ALL
1 0 0 8
2 11 19 0

> table(clusters(pdm.golub)$layer.2, golub1999$pheno)

AML B-ALL T-ALL
1 1 3 8
2 10 0 0
3 0 16 0
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> combinedLayers <- paste("l1-", clusters(pdm.golub)$layer.1, ".l2-",

+ clusters(pdm.golub)$layer.2, sep = "")

> table(combinedLayers, golub1999$pheno)

combinedLayers AML B-ALL T-ALL
l1-1.l2-1 0 0 8
l1-2.l2-1 1 3 0
l1-2.l2-2 10 0 0
l1-2.l2-3 0 16 0

Example of accessing the spectrum and embedded data:

> spectrum(pdm.golub, layer = 1)

[1] 1.009865 1.011265 1.024490 1.025392 1.025743 1.026238 1.026455 1.026856
[9] 1.027009 1.027300 1.027373 1.027660 1.027758 1.027846 1.027865 1.028037
[17] 1.028075 1.028166 1.028210 1.028305 1.028375 1.028445 1.028477 1.028507
[25] 1.028573 1.028595 1.028653 1.028664 1.028739 1.028829 1.028848 1.028916
[33] 1.029039 1.029230 1.029300 1.029411 1.029492

> dim(embedding(pdm.golub, layer = 2))

NULL

Plotting PDM output

Using the following example code:

> plot(pdm.golub, main = "Golub1999")

> plot(pdm.golub, 1, pch = golub1999$pheno, main = "with phenotypes")

> separateAt <- which(golub1999$pheno[-length(golub1999$pheno)] !=

+ golub1999$pheno[-1])

> abline(v = separateAt + 0.5, col = "grey")

we produce:
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with phenotypes − LAYER 1

Running PDM with user-set parameters

A few examples: first, let’s force 3 clusters and set sigma=0.5 through params, and run just one layer:

> pdm.golub.k3 <- PDM(golub1999$expr, max.Layers = 1, params = list(sigma = 0.5,

+ k = 3))

Computing layer 1 ...

> plot(pdm.golub.k3, pch = golub1999$pheno, main = "Golub PDM: k=3, sigma=0.5")

Let’s attempt to run another layer from the previous one, now forcing 2 clusters:

> PDM(pdm.golub.k3, max.Layers = 1, params = list(sigma = 0.5,

+ k = 2))

Computing layer 1 ...
Projection Failure: cluster centroids are not independent. Stopping with current layer.

PDMlayers object with:
Layers: 1
Samples: 38
Layer cluster assignments (first 10 samples):
[1] 1 2 1 2 2 2 1 1 1 1

... use "clusters()" to get complete clusters.

Available slots:
clusters params scrubbed PDMspectra
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Finally, two examples using a different distance function: the built-in Euclidean distance, and the user-
supplied distance function:

> pdm.golub.euc <- PDM(golub1999$expr, params = list(distanceFn = euclideanDist))

Computing layer 1 ...
Computing layer 2 ...
Partition failure in layer 2 : no structure compared to null data; stopping with previous layer.

> plot(pdm.golub.euc, pch = golub1999$pheno, main = "Golub PDM: Euclidean dist")

> maxDist <- function(x) {

+ d <- as.matrix(dist(t(x), method = "euclidean"))

+ d <- d/max(d)

+ return(d)

+ }

> pdm.golub.max <- PDM(golub1999$expr, params = list(distanceFn = maxDist))

Computing layer 1 ...
Computing layer 2 ...
Partition failure in layer 2 : no structure compared to null data; stopping with previous layer.

> plot(pdm.golub.max, pch = golub1999$pheno, main = "Golub PDM: maxDist dist")

The associated plots are:
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